

Course Name	Logic Circuits (Digital System I)
Prerequisite course	
Corequisite course	Discrete Mathematics
References	1. Digital Design, M.Morris Mano, 5 th ed., 2012.
	2. Introduction to switching theory & logical design, Fredric J.Hill &
	Gerald R.Peterson,3 th ed., 1981.
Course instructor	Rasoul Dalirrooy fard
Syllabus	1. Primary Concepts: Signals and Digital circuits, Representation
	of numbers, Number Base Conversion , Sumation and
	Subtraction in 2 base, One's and Two's Complements, Binary
	Codes (BCD, Gray, 84-2-1, Excess-3, 2421,), Detection
	& Correction of Error .
	2. Boolean Algebra and Logic Gates: Algebra Structures and
	Boolean algebra, DeMorgan's Theorem, Boolean Function and
	Algebra Operations , Literal Concept , Canonical and Standard
	Form, Minterm & Maxterm Function, Digital Logic Families,
	Digital Logic Gates and their Characteristics (Fanout, Delay
	Time, Noise Margin).
	3. Simplification of Boolean Functions: Karnaugh Table, Prime
	Impliment Table, Two Level Implementations, Don't care States,
	Quine-McClusky Algorithm.
	4. Combinational Logic Circuits: Design Methods, Adders,
	Subtractors , Code Conversion , Analysis Procedure , EOR &
	ENOR Gates Applications.
	5. Combinational Logic with MSI & LSI: Binary Parallel Adder,
	Decimal Adder, Magnitude Comparator, Decoders, Encoders,
	Demultipelexer, Multipelexer, Read Only Memory (ROM),
	Programmable Logic Array (PLA).
	6. Sequential Logic Circuits: Asynchronous & Synchronous
	Concepts, Asynchronous Circuits Problems (Cycle, Race,
	Hazard), Asynchronous SR Flip Flop, Synchronous Flip Flop,
	Triggering, Master Slave & Edge Triggered Flip Flop, Analysis
	of Synchronous Circuits Procedure, Design of Synchronous
	Circuits, Simplification of States Theorem, State Assignment
	Theorem , Counters , Mealy & Moor Circuits .
	7. Synchronous Sequential Logic Circuits with MSI & LSI:
	Registers, Shift Registers, Serial Adders, Ripple Counters,
	Synchronous Counters, Timing Sequences, Johnson Counter,
	Memory, Sequential & Random Access Memories.