| Course Name | Digital Speech Processing | |-------------------|--| | References | X.Huang, A.Acero, Spoken Language Processing, Prentice-Hall, 2001. L.Rabiner, Theory and Applications of Digital Speech Processing, Pearson, 2011. Handbook of speech processing, Springer, 2008. Rabiner, Juang, Fundamentals of Speech Recognition, Prentice-Hall, 1993. Dong Yu, Li Deng, Automatic Speech Recognition, A Deep Learning Approach, Springer, 2015. | | Course Instructor | Dr. Babak Nasersharif | | Syllabus | An introduction to digital speech processing and its branches Speech generation and perception in Human A review on Digital Signal Processing basics: Signals and systems A review on Digital Signal Processing basics: Z and Fourier transforms Digital speech Pre-processing methods (Framing and windowing) digital speech signal in the time domain (energy, Zero crossing, autocorrelation,) digital speech signal in the frequency domain (short-time Fourier transform, spectrogram,) Cepstrum analysis Anatomy of ear and Mel-cepstrum Cepstral distance and delta-cepstral Linear Prediction Analysis Speech recognition using DTW HMM –Definition and 3 main problems Viterbi and Baum-Welsh algoritgms for HMM GMM-HMM model Evaluations methods of Automatic speech recognition systems (ASR) Other and deep architectures for ASR Continuous and connected speech recognition A review on speech enhancement and robust speech recognition methods |