| Course Name | Probabilistic Graphical Models | | |-------------|--|---| | References | Szeliski, Richard. Computer vision: algorithms and applications. Springer
Science & Business Media, 2010 Dr. Behrooz Nasihatkon | | | instructor | | | | Syllabus | Introduction to computer vision and its applications. Image representation, sampling and quantization, light spectrum, visual perception, Color | Lab0: Introduction to Python. | | | 3. Pixel-wise operations, brightness, contrast, Histograms, 4. Histogram equalization, Color Histograms | Lab1: Introduction to numpy, scipy, and matplotlib, Reading and displaying images with scipy and matplotlib | | | 5. Noise, Gaussian Noise, Linear filtering, convolution, blurring,6. 2D Fourier transform, DFT, FFT | Lab2: Introduction to OpenCV, reading, writing and displaying images. image blending Lab3: Working with Videos, histograms | | | 7. Normalized correlation, template matching,8. Other types of noise, median filtering,Bilateral filtering | Lab4: Noise, blurring,
filtering, Gaussian filtering,
Median Filtering, Bilateral
filtering | | | 9. Image Gradients, Edge Detection, 2D edge operators,10. Laplacian of Gaussian, Canny Edge detector. | Lab5: Reading from camera devices, edge detection | | | 11. Image Thresholding, Binary Images,
Connected Components, Morphology | | | | PART II - Computer Vision | | | | T | |--|--| | 12. Hough Transforms, Line Hough transform,
Circle Hough Transform | Lab6: Binary Images,
Connected Components,
Thresholding, Morphology | | 13. Introduction to features and feature matching, Corner Detection, Harris corner detector, Multiscale corner detection | Lab7: Hough Transforms | | 14. Image Pyramid, Scale invariance, Scalespace analysis,15. Introduction to SIFT, SIFT detection | Lab8: Corner Detection | | 16. SIFT description17. SIFT matching, KD-trees18. Other types of features (SURF, ORB, etc.) | Lab9: Image Pyramid,
Multiscale Corner detection | | 19. Geometric Image Transformation,
Homography & Perspective,20. Image Registration and alignment21. Robust alignment, RANSAC | Lab10: SIFT detection, description and matching | | 22. Introduction to Video analysis, background subtraction.23. Introduction to image recognition, Bayesian classification | Lab11: Geometric Image
Transformations, Perspective
Correction | | 24. More of Bayesian Classification, Feature extraction, Nearest neighbour, kNN25. Support Vector Machines | Lab12: Feature-based Image
Alignment, RANSAC, feature-
based object detection | | 26. Hog features, Local Binary Patterns, Feature
Channel27. Object Detection, Sliding window | Lab13: Image Classification | | 28. Boosting, Cascades & face detection,29. Harr, Integral Images, Viola-Jones | Lab14: Object Detection | | 30. Introduction to Neural Networks 31. Convolutional Neural Networks | Lab15: Neural Networks | | 22. Introduction to Video analysis, background subtraction. 23. Introduction to image recognition, Bayesian classification 24. More of Bayesian Classification, Feature extraction, Nearest neighbour, kNN 25. Support Vector Machines 26. Hog features, Local Binary Patterns, Feature Channel 27. Object Detection, Sliding window 28. Boosting, Cascades & face detection, 29. Harr, Integral Images, Viola-Jones 30. Introduction to Neural Networks | Lab11: Geometric Image Transformations, Perspective Correction Lab12: Feature-based Image Alignment, RANSAC, feature-based object detection Lab13: Image Classification Lab14: Object Detection |