Course Name	Electrical Circuits
Prerequisite course	Differential Equations
Corequisite course	
References	1. Basic Circuit Theory, Charles A. Desoer and Ernest S. Kuh, McGraw-Hill Book Company, 1969. 2. Introduction to Electric Circuits, Richard C. Dorf, James A. Svoboda, John Wiley \& Sons, 8th edition, 2010. 3. 3. Electric Circuits, James W. Nilsson, Susan A. Riedel, Pearson Education, 10th edition, 2014. 4. 4. Linear Circuits: Time Domain, Phasor and Laplace Transform Approaches, Raymond A. DeCarlo, Pen-Min Lin, Kendall Hunt Publishing Company, 3rd edition, 2009. 5. 5. Fundamentals of Electric Circuits, Charles K. Alexander, Matthew N.O. Sadiku, McGraw-Hill Education, $\quad 5^{\text {th }}$ edition, 2012.
Course instructor	Rasoul Dalirrooy fard
Syllabus	1. Circuit Elements and their modelling and Resistive Networks: Compressed Elements and Circuits, Linear \& Nonlinear Resistive, Linear \& Nonlinear Capacitive, Linear \& Nonlinear Inductance, Independent \& Dependent Sources (Current \& Voltage). Kirchhoff 's laws, waves figure, Power and Energy , Methods of Analysis of Node \& Mesh in Resistive Networks , Thevenin's \& Norton's theorems , Superposition's law and Symmetric in Analysis of Resistive Networks , Operational Amplifier and Linear Applications. 2. Analysis of Differential Equations with Constant Coefficients 3. Analysis of First Order Circuit : Transient Response and Steady State Response, The Step Response, The Impulse Response. 4. Analysis of Second Order Circuits: Transient Response and Steady State Response , The Step Response , The Impulse Response, Oscillation . 5. Application of Laplace Transform and Sinusoidal Steady State Analysis: Laplace Transform \& their Application in Electrical Circuits, Impedance \& Admittance Concepts , Frequency analysis , Transfer Function \& Frequency Response . 6. Ac Power in the Sinusoidal Steady State: Active Power, Effective Values, Maximum Power 's Theorem. 7. Two Port Networks and their Representations

